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LETTER TO THE EDITOR 

Random walks and self-avoiding walks on self-affine fractals 

Yu Shi and Changde Gong 
China Center of Advanced Science and Technology (World Laboratory), PO Box 8730, 
Beijing 100080, People's Republic of China 

Received 14 May 1993 

Abstract We discuss nndom walks and self-avoiding walks on a self-fine fractal which is a 
Canesix, product of two fractals. Mean-square distances on the two sub-fractals have different 
sdings.  Flory-type formulae are derived. 

Countless work has been done on the scale invariant objects, fractals [I-31. Fractals 
usually studied are self-similar, i.e. invariant with respect to isotropic contraction or 
dilution. In many physically relevant cases, however, the structnre of the objects is 
such that it is invariant only under direction-dependent scaling. These anisotropically 
scale invariant objects are called self-affine fractals. Single-valued nowhere-differentiable 
functions [ 1-31, such as the record of the one-dimensional random walker (the displacement 
versus  time^ function), are typical examples. Such a function has the scaling properties 
F ( t )  - bFHF(bt),  and is characterized by a non-trivial local fractal dimension Dl = 2 - H ,  
but the global dimension is almost unity. On the other hand, the Cartesian product of two 
fractals with different fractal dimensions dl and dz embedded into two independent D ,  
and Dz-dimensional Euclidean spaces, respectively, could lead to a self-affine object with 
non-trivial global fractal properties [3]. The Cartesian product, or the direct product of two 
graphs, is defined as the following 141: let V ( A )  and V ( B )  represent the vector sets of 
graphs A and 5, then its vertex set V ( C )  consists of all pairs (i, j )  where i E V ( A )  and 
j E V ( 5 ) .  Adjacency on C should also be defined. Let vertices (i, j )  and (k ,  I )  be adjacent 
on C if either i is adjacent to k on A and j = 1 ,  or i = k and j is adjacent to I on B.  Hence, 
for example, the square lattice is a Cartesian product of two lines. Schwalm and Schwalm 
[4] suggested that a Cartesian product of two two-dimensional fractals could be a model 
for some disordered material. Since the product of two two-dimensional fractals cannot 
be defined geometrically in three-dimensional physical space, this suggested structure can 
only be understood, at most, to be defined by the Hamiltonian matrix elements. A variety 
of growth models leads to self-affine aggregates. which could be treated  as the~products 
of self-similar fractals. A typical example is the directed percolation cluster at criticality 
[5], with different fractal dimensions along and perpendicular to the composing directions, 
respectively. Another example is the product of a two-dimensional fractal and a linear chain 
[6,7]. If the two-dimensional fractal is a Koch curve, this could be viewed as a model of 
landscape [Z]. One could also manufacture a periodic fractal superlattice, which is the 
product of a two-dimensional fractal and a periodic chain. 

Such a structure has been termed a 'bifractal'. According to the addition rule [I-31, 
the global fractal dimension of the bifractal is d = dl + 4. This was tested numerically 
on critical directed percolation clusters [5].  We have studied the dynamical properties of 
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such an object [8], showing theadditivity of spectral dimensions [9], i.e. 2 = d; +& where 
2, 21 and & are the global specGal dimension and spectrd dimensions of sub-fractals, 
respectively. 

Consider a random walk of total N steps on a bifractal lattice, the sub-fractals of which 
are perpendicular to each other. Then on average there are, respectively, NI = zf N/(zl +z2) 
and Nz = zzN/(z l  + z2) steps on the sub-fractals, where ZI and z2 are, respectively, 
coordinate numbers in the sub-fractals. The random walk can thus be decomposed to 
independent NI and N2 steps on sub-fractals. Hence the mean-square distances in the two 
sub-fractals behave asymptotically as 

(R:(N)) - ~2/d$' i = 1,2 (1) 

where d$) = 2di/& are fractal dimensionalities of random walks on the two sub- 
fractals. Generally there is no scaling for the global mean-square distances (R2(N)) = 
(R:(N)) + (R:(N)) since 4) # d:?. For a Cartesian'product of Euclidean lattices, 
di = Ji, hence d$) = 2 is universal and there is a scaling for (R*(N)) with the global 
fractal dimensionality of random walk being also 2. 

The volume that a random walker reaches on the bifractal after N steps is RP  R;" .-, 
Nd1/dc'Nd2/d," = N('l+A)/z. The condition that a random walk is transient is therefore 
2 = 21 + & z 2. Thus by constru&ing a bifractal, one may easily obtain a structure with 
2 > 2, hence a continuous symmetry can be spontaneously broken on it [IO], while a < 2 
for the fractals usually studied. 

As is well known for Euclidean spaces as wellas fractals, it is naturally expected for a 
self-avoiding walk (SAW) on a bifractal that 

(R:(N)) - N2"* i = 1,2. (2) 

Due to the particular restriction for a SAW, vis will not be independent and are simply those 
of 'free' sub-fractals, as indicated in the following !.=lory-type formulae. 

To derive the Flory-type formula for a SAW, one should write the free energy F of an 
N-step SAW as the sum of energetic terms and entropic terms. Now the volume that a SAW 
in the bifractal reaches after N steps is R$ R;". Therefore the free energy is 

where A is a coeficient, P(R1, Rz, N) is the probability of a random walker reaching 
distances RI on one sub-fractal and R2 on the other after N steps. In general, the function 
P(R, N )  for SAWS on a fractal is [ l l ]  

P(R, N) - ~ X ~ [ - - B ( R ~ ~ / N ) ~ ]  (4) 

where B is a coefficient, 01 is an exponent, which has not been well established. LY = 1 for 
Euclidean spaces. Consequently, in a bifractal 

P(Rr, Rz, N) - exp[-BI(Ry/N)P - BZ(R?/N)~]. (5) 

Minimization of (3) with respect to RI and R2, by setting aF /aR]  = aF/aRz = 0, 
yields 

(6) ~ 2 + u 1  ~ Reidt)+di Rd2 
I 2 
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and 

V) N2+e2 Rda od%h 
I R2 

Substituting RI  - NU' and R2 - NUS, one obtains finally 

(8) 
(2 + ffi)%d$Z) + (ai - ~12)dz 

alcrzdw dw + olld$)d2 + a2d$)dl (1) (2) 
U ]  = 

and 

(9) , .  
(2 + adaid:) + (W - ai)di 

a1a2dw dw + ald;'dz + ffzd,?)dl ( 1 )  (2) 
U2 = 

from which we know that there exists global scaling for mean-square distances (U] = u2) 

when d$? = d(') w and a1 = ( ~ 2 .  

To be more precise, the various dimensionalities in the above formula. should be 
replaced by those of the backbone of the lattice [ l l ,  121, since SAWS can only move on the 
backbone, otherwise they would be trapped at the dangling ends. The following examples 
we discuss are their own backbone, so we neglect this matter. 

We may treat the square lattice as a Cartesian product of two linear lines. Given 
d$) = d(D w = 2, a1 = ff2- = 1 and dl = d2 = 1, we obtain from (8) and (9) that 
uI = u2 = 3/4. Similarly, regarding the cubic lattice as a Cartesian product of a linear line 
and a square lattice, we obtain uI =,u2 =,3/5. These are,well-known results. In fact, for a 
Cartesian product of Euclidean lattices, equations (8) and (9) reduce to 

3 
2 = d  

- 

where d = d l  + d2 is the global dimension. Hence the global scaling exponent of mean- 
square distances can be defined, and the original Flory formula is recovered. 

The best formula for CI is argued in [ 1 11 to be 

(11) 

where d,i, is the fractal dimension of the minimum path on a fractal. For exact fractals, 
we may use the approximation 111,131 

&n 

dw - dmm 
01 =~~ 

I 
f f = -  

d w - l '  

This is used in the following examples of bifractals. 
One is a periodic branching Koch lattice, which is periodic in one direction, while 

on planes perpendicular to it, the lattice is branching Koch curves with fractal dimension 
d2 = ~ l n  5 /  In 3 and fractal dimension of random walks d,") = In 5/ In 3 + ln(8/3)/ In 3 [ 121. 
One easily obtains u l  % 0.687 and u2 ~ i :  0.640. If the Koch curves are non-branching, with 
fractal and spectral dimension. respectively, In4/In3 and 1. then U, = 0.721. U* = 0.663. 
For a periodic Sierpinski lattice, which is the product of a periodic chain and a two- 
dimensional Sierpinski gasket, d2 = In3/ln2, dc )  = In5/In2 1121. Therefore V I  % 0.670, 
U* % 0.624. 

It is interesting to extend our study to random walks and SAWS on directed percolation 
clusters, and compare the mean field-type results presented here with Monte Carlo and 
renormalization group approaches. However, we feel that the latter is difficult because of 
the anisotropy of bifractals. 
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